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We compared the spatial and temporal allocation of attention as revealed by microsaccades. Observers
viewed several concurrent ‘‘rapid serial visual presentation’’ (RSVP) streams in the periphery while main-
taining fixation. They continually attended to, and discriminated targets in one particular, cued stream.
Over and above this continuous allocation, spatial attention transients (‘‘attention shifts’’) were prompted
by changes in the cued stream location and temporal attention transients (‘‘attentional blinks’’) by suc-
cessful target discriminations. Note that the RSVP paradigm avoided the preparatory suppression of
microsaccades in anticipation of stimulus or task events, which had been prominent in earlier studies.
Both stream changes and target discriminations evoked residual modulations of microsaccade rate and
direction, which were consistent with the presumed attentional dynamics in each case (i.e., attention
shift and attentional blink, respectively). Interestingly, even microsaccades associated with neither
stream change nor target discrimination reflected the continuous allocation of attention, inasmuch as
their direction was aligned with the meridian of the target stream. We conclude that attentional alloca-
tion shapes microsaccadic activity continuously, not merely during dynamic episodes such as attentional
shifts or blinks.

� 2012 Elsevier Ltd. All rights reserved.
1. Introduction

In humans and their closer relatives, visual gaze is stabilized
against head and body movements by compensatory eye move-
ments which are guided by both visual and vestibular inputs
(Kowler, 2011). These fixational eye movements include small,
involuntary saccades which have been termed ‘‘microsaccades’’
and which exhibit the same dynamical characteristics (apart from
size) as larger, voluntary saccades (Collewijn & Kowler, 2008;
Hafed, 2011).

While microsaccades are irregular and infrequent (with rates on
the order of 1 Hz, Engbert, 2006; Kowler, 2011), their statistics over
many identical trials reflects both visual input transients and
changes in cognitive state. Typically, visual onsets first decrease
and then increase the microsaccade rate transiently, in each case
by a factor of two or more (Engbert, 2006; Hafed, Lovejoy, & Krauz-
lis, 2011; Pastukhov & Braun, 2010). An even more pronounced
reduction in microsaccade rate is observed in anticipation of the
imminent appearance of task-relevant stimuli (Hafed, Lovejoy, &
Krauzlis, 2011; Pastukhov & Braun, 2010; Steinman, Cunitz,
Timberlake, & Herman, 1967). This preparatory saccadic suppres-
ll rights reserved.
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sion may serve to minimize the detrimental effects of ill-timed
microsaccades on visual performance (Hafed & Krauzlis, 2010;
Hafed, Lovejoy, & Krauzlis, 2011).

Covert attentional states influence the direction of microsac-
cades: when fixation is maintained but a peripheral location is
cued as being task-relevant, microsaccades tend to aim first to-
wards this location and later back towards fixation (Engbert &
Kliegl, 2003; Hafed & Clark, 2002; Horowitz et al., 2007; Laubrock
et al., 2010). Moreover, successful allocation of attention (as indi-
cated by task performance) is associated with microsaccades to-
wards the task-relevant location (Hafed & Clark, 2002; Hafed,
Lovejoy, & Krauzlis, 2011; Pastukhov & Braun, 2010). Microsac-
cades orient towards the task-relevant location both in response
to a visual onset (‘‘involuntary transient attention’’) and in antici-
pation of a subsequent task-relevant stimulus (‘‘voluntary sus-
tained attention’’, Carrasco, 2011). Paradoxically, this orientation
of microsaccades increases during the saccadic suppression in
anticipation of task-relevant stimuli (Hafed, 2011; Pastukhov &
Braun, 2010).

The correlation between microsaccades and covert attention
likely reflects shared neural mechanisms in the superior colliculus
(Hafed, Goffart, & Krauzlis, 2009; Hafed, 2011; Hafed & Krauzlis,
2010) and elsewhere. Specifically, the superior colliculus (together
with other brain structures) is thought to implement a ‘priority’ or
‘saliency’ map that guides both eye movements and shifts of visual
attention in the absence of eye movements (Cavanaugh, Alvarez, &
Wurtz, 2006; Fecteau & Munoz, 2006; Hafed & Krauzlis, 2008;
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Lovejoy & Krauzlis, 2010). Numerous behavioral studies have con-
firmed interactions between saccade planning and shifts of visual
attention (e.g., Baldauf & Deubel, 2008; Deubel & Schneider,
1996; Gersch et al., 2009; Wilder et al., 2009).

Here, we modulate covert attention in space and over time in
order to compare the respective effects on microsaccadic activity.
In contrast to earlier studies, our experimental design largely
avoided modulations of microsaccade rate due to visual onsets or
to anticipation of task-relevant stimuli (residual modulation
620%). In earlier studies, the effects of covert attention were con-
founded by large (4- to 10-fold) modulations of microsaccade rate
relating to visual onsets and/or to target anticipation (Betta,
Galfano, & Turatto, 2007; Engbert & Kliegl, 2003; Galfano, Betta,
& Turatto, 2004; Hafed & Clark, 2002; Laubrock, Engbert, & Kliegl,
2005; Pastukhov & Braun, 2010; Rolfs, Kliegl, & Engbert, 2008;
Rolfs, Engbert, & Kliegl, 2005; Rolfs, Laubrock, & Kliegl, 2006).

Our observers attended continuously to one of several streams
of successively presented items (‘‘rapid serial visual presentation’’
(RSVP) (Potter & Levy, 1969)) in the visual periphery. To obtain
‘‘attention shifts’’ in space, we caused the attended stream to
change its location from time to time. To modulate attentional allo-
cation over time, we relied on the ‘‘attentional blink’’ (Raymond,
Shapiro, & Arnell, 1992), a prolonged attentional deficit that fol-
lows successful discrimination of target items in the monitored
stream (Dux & Marois, 2009; Hommel et al., 2006; Martens &
Wyble, 2010). Thus, three kinds of attentional manipulations –
continuously sustained, spatial shift, temporal blink – were
combined in one experimental situation which, moreover, avoided
simultaneous, large modulations of microsaccade rate.

All manipulations affected the prevailing direction(s) of micro-
saccades independently of modulations of microsaccade rate.
Microsaccades were directed predominantly either towards the
task-relevant location or back towards fixation, with a comparable
degree of alignment during all three manipulations. Both microsac-
cade directions exhibited equal and stationary rates whether
attention was sustained on target or on distractor items. However,
when attention shifted to a new location, or when it disengaged
from a target item, one direction transiently dominated over the
other, consistent with prior results (Laubrock et al., 2010; Pastuk-
hov & Braun, 2010; Valsecchi, Betta, & Turatto, 2007). Our findings
provide several new constraints for computational models of
microsaccade generation (Engbert et al., 2011; Engbert, 2012;
Hafed, Goffart, & Krauzlis, 2009; Rolfs, Kliegl, & Engbert, 2008).
We conclude that attentional allocation and eye movements may
be controlled continuously – not just intermittently – by closely
overlapping brain structures.
2. Material and methods

2.1. Observers

Four observers (three females), including one author (vv) partic-
ipated in Experiment 1. Five observers (three females), including
one author (vv) participated in Experiment 2. Procedures were
approved by the medical ethics board of the Otto-von-Guericke-
Universität, Magdeburg and informed consent was obtained from
all observers. Apart from the author, all observers were naı̈ve to
the purpose of the experiment and were paid to participate.
2.2. Apparatus

Stimuli were generated in Matlab, using the Psychophysics
Toolbox extensions (Brainard, 1997), and displayed on a CRT
screen (Iiyama VisionMaster Pro 514, iiyama.com) with spatial
resolution of 1600 � 1200 pixels and refresh rate of 100 Hz. The
viewing distance was 73 cm, so that each pixel subtended approx-
imately 0.019�, and background luminance was 36 cd/m2. Ambient
illumination was 80 cd/m2.

2.3. Stimuli and procedure

2.3.1. Experiment 1
Four streams of letters were presented concurrently at rates of

10 Hz (rapid serial visual presentation, RSVP, see Fig. 1), each
stream in a unique color (orange, green, yellow, or light blue). Each
stream contained 5–10 target letters (N and Z) and other letters as
distracters. Targets appeared at random times in all four streams.
Target identity was chosen randomly and independently for each
stream. Letters measured 1.8� in height and were centered at
eccentricities of 3.8� on the vertical or horizontal meridian. Stream
colors and positions were randomized for each trial. Prior to each
trial, observers were told which stream (color) was to be moni-
tored during the trial. In general, observers were instructed to re-
port the appearance of either target (N or Z) in the relevant
stream as quickly as possible (by key press). Note that this was a
compound detection (Sperling, Dosher, 1986), not a discrimination,
in that observers reported target presence, but not target identity.

Each trial lasted for 30 s. In the hold condition, streams main-
tained their position/color during the entire trial (Fig. 1A, Movie
1). In the switch condition, all streams exchanged position/color
every 2, 4 or 6 s with their counterparts on the same meridian (ver-
tical or horizontal) (Fig. 1B, Movie 2).

2.3.2. Experiment 2
The procedure was similar to the hold condition of Experiment

1. Three streams of letters, each of unique color (orange, green, or
yellow), were presented at fixation (Center, letter height 1�), near
fixation (Near, eccentricity 3�, letter height 2.3�), and in the periph-
ery (Far, eccentricity 9.5�, letter height 5.5�), see Fig. 8A. Stream
colors and positions were randomized from trial to trial and
observers were instructed to monitor one particular stream and
to report the appearance of a target (N or Z) in this stream.

2.4. Eye movement analysis

Eye movements were monitored binocularly and at a rate of
1000 Hz with a desk-mounted eye tracker (Eyelink 2000, SR Re-
search, sr-research.com). Microsaccades and saccades were
identified with the automated procedure described in Engbert
and Kliegl (2003) and the analysis was limited to displacements
<600. In addition, pairs of opposing microsaccades separated by less
than 750 ms were flagged as ‘‘physiological square-wave-jerks’’
(SWJ) Hafed and Clark (2002). As expected for saccadic eye move-
ments, peak velocity and amplitude were highly correlated in all
conditions (Fig. 2AB). Pupil area during saccadic and non-saccadic
intervals was identical (Fig. 2C).
3. Results

Our central aim was to investigate the relation between atten-
tional state and microsaccadic (MS) activity. To this end, we com-
bined three attentional manipulations in a single experimental
situation. To minimize task-related variations of microsaccade rate
(either by visual onsets or by anticipatory suppression), we em-
ployed streams of rapidly presented letter items. Observers per-
formed an attentionally demanding discrimination with respect
to these items, obliging them to sustain attention (almost) contin-
uously on the task-relevant stream. Spatial attention shifts were
induced by changing the location of the cued stream. Temporal
attention transients were obtained by means of an ‘‘attentional
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Fig. 1. Experimental design. Four RSVP streams of letters (each of different color) were presented at eccentric locations on the vertical and horizontal meridians. Observers
maintained fixation and monitored the stream of one particular color (highlighted for purposes of illustration), reporting the appearance of a target (N or Z) by button press.
Streams either held their location for the entire trial duration of 30 s (A, hold condition, see Movie 1), or exchanged positions with the opposite stream on the same meridian
every 2, 4 or 6 s (B, switch condition, see Movie 2).
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Fig. 2. Saccade properties. Saccadic main sequence for hold (A) and switch (B) conditions. The linear correlation between these measures was R = 0.92 (p < .001) and R = 0.93
(p < .001), respectively. (C) Cumulative distribution function (CDF) of pupil sizes, normalized to individual observer means, during saccade (open circles) and non-saccade
intervals (continuous curve). The two distributions were virtually identical (Wilcoxon ranksum p = 0.433 ± 0.08).
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blink’’ (Raymond, Shapiro, & Arnell, 1992). ‘‘Attentional blinks’’ are
prolonged attentional deficits which follow the successful discrim-
ination of target items in rapid serial discrimination paradigms
such as the one used here (Dux & Marois, 2009; Hommel et al.,
2006; Martens & Wyble, 2010).

Observers were instructed to maintain fixation while monitor-
ing one of four letter streams for 30 s and reporting the appearance
of successive letter targets (see Section 2 for details). The to-be-
monitored stream was identified by color and either retained its
position during the entire trial (hold condition, Fig. 1A and Movie
1) or switched positions with its opposite number on the same
meridian from time to time (switch condition, Fig. 1B and Movie
2). Importantly, both targets and position switches occurred at
irregular intervals, forcing observers to attend continuously to
the target stream. For the same reason, observers had to shift
attention promptly to a new target stream location in the switch
condition.

Observers reported target appearance reliably in both the hold
and switch conditions, with performance levels ranging from 80%
to 89% correct for all observers and conditions. The fraction of false
alarms (mistakenly reported targets) ranged from 2.5% to 4%. No
significant difference between hold and switch conditions was ob-
served either in terms of behavioral performance (paired samples
t-test: performance T3 = �0.24, p = .82; reaction time T3 = 0.16,
p = .16), or in terms of MS rate (T3 = 0.04, p = .97), or in terms of
MS amplitude (T3 = �0.4, p = .69). The high level of performance
implies that attention was continuously engaged during both hold
and switch conditions. The probability of ‘attention lapses’ can be
estimated as less than 0.2 (see below).

The visual onsets of letter items of the RSVP sequence failed to
modulate microsaccade activity (residual modulation �5%, Fig. 3).
This was an intended outcome of our rapid RSVP paradigm and dif-
fers from previous studies, in which visual onsets typically first
suppressed and later enhanced the rate of microsaccades. For
example, in the RSVP study of Valsecchi, Betta, and Turatto
(2007), microsaccade rate was modulated approximately twofold
in each direction (their Fig. 3). In the present paradigm, microsac-
cades were equally likely to occur at all latencies relative to letter
items, thus uniformly sampling the temporal neighborhood of each
display item. This allowed us to monitor attentional effects on
microsaccade direction without the confound of substantial rate
modulations (see also below).

Each 30 s-long presentation comprised a number of display
events – appearance of target items and location switches of the
target stream – as well as several behavioral response events –
microsaccades (MS) and target identification reports. The number
of target items ranged from 3 to 7 per stream, spaced by variable
intervals (both hold and switch condition). Targets appeared inde-
pendently in all four streams. The number of color/location
switches ranged from 3 to 10 per stream, again spaced by variable
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intervals (switch condition only). Color/location switches occurred
simultaneously in all four streams. The interval distribution for
these events is shown in Fig. 4. Note that event rates were similar
with 0.225 Hz for target appearances/identification reports and
0.25 Hz for stream switches, which implies that both kinds of
events were sampled by a comparable number of microsaccades
(average rate 0.27 Hz across observers) (see Fig. 4A).

3.1. Event-related attention effects

Previous work has shown that spatial attention shifts are asso-
ciated with pronounced modulations in the rate and direction of
MS (Hafed & Clark, 2002; Laubrock et al., 2010; Pastukhov & Braun,
2010). To replicate these findings under the present conditions, we
established the MS activity associated with switching the target
stream (switch condition).

We found the instantaneous MS rate to be weakly suppressed in
anticipation of a stream switch (by approximately 20% at a latency
of �400 ms) and to be strongly enhanced after the switch (by
approximately 100% at a latency of 750 ms) (Fig. 5A). The total
modulation of microsaccade rate was approximately 2.2-fold. After
the switch, the majority of MS was directed towards the new target
stream location (Fig. 5B). Furthermore, grouping successive MS
into square-wave-jerks (SWJ), revealed a more intricate pattern,
in that the SWJ rate reached a first maximum around latencies of
250 ms and a second maximum around latencies of 1250 ms
(Fig. 5C).

Previous evidence suggests that MS activity may also be modu-
lated during attentional blink episodes (Valsecchi, Betta, & Turatto,
2007). Accordingly, we analyzed MS activity following the success-
ful discrimination of letter targets (letters N or Z). We found the MS
rate to be weakly enhanced in anticipation of a target (by approx-
imately 10% around latencies of �300 ms) and subsequently sup-
pressed (by approximately 40% around latencies of 500 ms) and
then elevated significantly (by approximately 80% around latencies
of 1100 ms, Fig. 6A). The total modulation of microsaccade rate was
approximately 2.4-fold. The majority of MS was directed away
from the target letter, consistent with an attentional disengage-
ment (Fig. 6B). The rate of SWJ was suppressed significantly below
its average level (Fig. 6C).

Consistent with an attentional blink, the pattern just described
obtained only for successful discriminations. Following an unsuc-
cessful target identification, the MS rate was first moderately sup-
pressed (approximately 25% at latencies between 500 ms and
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1500 ms) and later moderately elevated (approximately 25% about
latencies of 2000 ms)(Fig. 7A), with an approximately 2.3-fold total
modulation. The direction of MS was not modulated significantly
(Fig. 7B). The rate of SWJ exhibited a significant elevation at laten-
cies between 1500 ms and 2500 ms (Fig. 7C). This late elevation
coincides with the presumed end of the attentional blink period
and exhibits characteristics of a spatial attention shift (see above).
Accordingly, this late elevation may reflect a re-focusing of spatial
attention after having lapsed.

To summarize, the spatial attention shift occasioned by a
stream switch is characterized by MS towards the target location
at latencies of approximately 750 ms. In addition, there is a high
probability of a SWJ towards the target location at latencies of
approximately 250 ms and of approximately 1250 ms. In contrast,
the temporal engagement of attention during successful target
identification is associated with MS directed back towards fixation,
most often at latencies of approximately 1000 ms, consistent with
a relaxation of the attentional focus. Yet another pattern of MS
activity is observed after unsuccessful target identification. In this
instance, MS activity is moderately suppressed until 750 ms after
the event, at which time there is an elevated probability of MS
and SWJ towards the target location, perhaps reflecting the re-
focusing of attention on the cued stream.
3.2. Effect of eccentricity

Given the detailed information revealed by MS activity about
the (average) timing and direction of attention shifts, we won-
dered whether MS activity might prove informative also about
the visual eccentricity of the attended location. To investigate
this possibility, we modified the display layout and presented
three letter streams (each of unique color), one at fixation, a sec-
ond at 3� eccentricity, and a third at 9.5� eccentricity (Fig. 8A).
Each letter stream maintained its color/location for the entire
30 s presentation (as for the hold condition of the previous exper-
iment). Observers were instructed to maintain fixation at display
center while monitoring (and reporting target appearances in)
one particular stream.

The results are summarized in terms of the average rate and
amplitude of MS observed in each condition (Fig. 8BC). They show
a clear difference between attending to a central and an eccentric
location: MS were significantly less frequent (paired samples t-test
T3 = �6.4, p = 0.008), and significantly smaller (paired samples t-
test T3 = �5, p = 0.015 and T3 = �6, p = 0.001), when observers at-
tended at fixation. Interestingly, MS rate and amplitude did not dif-
fer significantly when observers attended either one of the two
peripheral target streams. We conclude that MS amplitude does
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not (readily) differentiate between extrafoveal attended locations
of different eccentricity.

3.3. Non-event-related (‘unrelated’) microsaccades

In addition to the event-related attention effects described
above, we wondered whether there might also be attention effects
during periods associated with neither target events nor stream
switches. As mentioned, our experimental situation required
observers to attend continuously to the cued stream. Accordingly,
it seemed possible that this (mostly) steady allocation of attention
to a peripheral location might influence microsaccade activity even
in the absence of targets events or stream switches.

To distinguish ‘unrelated’ from ‘event-related’ microsaccades,
we excluded from the analysis a 3000 ms window around each tar-
get onset and each stream switch (from �750 ms before to
2250 ms after each event). In the hold condition, which contained
only target events, this criterion excluded 70 ± 7% of the presenta-
tion time and 66 ± 7% of the MS activity. In the switch condition,
which contained both target events and stream switches, it ex-
cluded 92 ± 5% of the presentation time and 91 ± 6% of the MS
activity.
To our surprise, mean MS activity was comparable during unre-
lated and event-related periods. When MS frequency was normal-
ized to the individual observer mean (which varied considerably
between observers), the switch condition yielded a normalized
mean rate of 0.99 ± 0.03 Hz for event-related and 1.04 ± 0.17 Hz
for unrelated MS activity. In the hold condition, we measured
0.90 ± 0.02 Hz for event-related and 1.14 ± 0.03 Hz for unrelated
MS activity. When the window of exclusion defining unrelated
MS was narrowed to 1500 ms around each event, the results re-
mained essentially unchanged.

A more detailed analysis of MS timing and amplitude provided
further evidence that MS activity was quantitatively comparable in
unrelated and event-related periods. As shown in Fig. 9A–C, we ob-
tained no significant difference between unrelated, target-related,
and switch-related periods with respect to either the mean inter-
MS-interval, or the variability of inter-MS-intervals, or the ampli-
tude of MS. Two sample t-tests were performed for each observer
(4), observable (3), and each pair of conditions (3). All p-values
were greater than the uncorrected significance level of a = 0.05.
These observations suggest that MS may occur spontaneously
(due to some independent random process with stationary statis-
tics), rather than being triggered by attentional transients.
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But how can we be sure that the MS we consider ‘unrelated’
were not in fact associated with attentional shifts (i.e., lapses in
the attentional monitoring of the cued stream)? Although it is
likely that attention lapsed occasionally, our argument is simply
that there must have been fewer attention shifts (per unit time)
in periods in which the cued stream remained in place than in peri-
ods in which the cued stream switched to a new location. While we
cannot know how often attention may have lapsed from a station-
ary cued stream, we can estimate the fraction of time during which
attention remained on this stream.
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Fig. 9. Comparison of event-related and non-event-related MS. Classifying MS as being as
related), or with none of the above (unrelated), we compared the mean interval between s
(C), and the informativeness of MS direction about the attended meridian (D). See Fig. 10
were observed (two-sample t-test, all p-values greater than a = 0.05).
Discriminating target letters (N or Z) embedded in a stream of
distractor letters places a considerable demand on attention
(Braun, 1998), so that the performance level of this task provides
a sensitive measure of attentional allocation. Specifically, a com-
plete lapse of attention reduces performance to chance level and
a partial lapse leads to a proportionately smaller reduction (Lee,
Koch, & Braun, 1999; Pastukhov, Fischer, & Braun, 2009). In the
present case, the performance level was 80–89% correct, while
chance performance was 17% correct. Given these values, we can
estimate the fraction of time a, during which attention was fully
allocated to the target stream, to be a = 0.76–0.87 (from
100%a + 17% (1 � a) = 80–89%).

In short, assuming that our attentional manipulations were
mostly effective (so that attentional shifts were more frequent dur-
ing event-related than during non-event-related periods), it fol-
lows that MS occurred spontaneously and with (overall)
stationary statistics.
3.4. Attentional alignment of event-related and non-event-related
(‘unrelated’) MS

As mentioned above, switch-related and target-related MS
seemed to be often directed either towards the target stream or
away from it (i.e., back towards fixation). In other words, MS
seemed to align predominantly with the meridian of the attended
stream. Accordingly, if observers attended a target stream on the
horizontal (vertical) meridian, the predominant direction of MS
was also horizontal (vertical). Representative examples of aligned
MS are shown Fig. 10A.

To quantify this apparent alignment, we computed the mean
absolute size of horizontal and vertical MS components, averaging
over the entire trial duration of 30 s. As expected, the mean abso-
lute horizontal and vertical MS size varied significantly with the at-
tended meridian (Fig. 10B): horizontal amplitudes were larger than
vertical amplitudes when the attended stream lay on the horizon-
tal meridian, and vice versa. Indeed, when examining Fig. 10B, it is
evident that the results from trials with different attended merid-
ians (horizontal and vertical) form two distinct clusters. Accord-
ingly, the attended meridian of an individual trial could be
inferred reliably from the relative size of horizontal and vertical
MS components by applying a simple linear criterion (straight lines
in Fig. 10B). This inference was equally reliable for hold and switch
conditions (92% and 92.5%, respectively). For individual observers,
the reliability of this inference ranged from 88% to 96% (hold
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condition, paired samples t-test against chance level performance
of the algorithm obtained for each individual observer by boot-
strapping, T3 = 7.01, p = 0.005) and from 88% to 98% (switch condi-
tion, T3 = 9.91, p = 0.002).

As MS alignment proved comparably informative for hold and
switch conditions, it was not a specific correlate of spatial attention
shifts (which we assume to have been less frequent during the hold
condition). To ascertain whether or not non-event-related MS
activity also exhibited this alignment, we computed the informa-
tiveness of unrelated MS during the hold condition. As shown in
Fig. 11, MS unrelated to target appearances (30 ± 7% of the total)
proved comparatively informative about the target meridian, with
84 ± 4% of trials classified correctly (significantly above chance,
T3 = 9.13, p = 0.003). Thus we found the degree of alignment with
the target meridian to be comparable for target-related, switch-
related and unrelated MS activity (Fig. 9D, paired t-test, all p-
values were greater than a = 0.05).

Our analysis excluded from consideration all eye movements
larger than 1� (0.4% of the total). This cut-off was arbitrary and
other values have been used in the literature (Martinez-Conde,
Macknik, Troncoso, & Hubel, 2009). Analysis of MS amplitude
showed that this cut-off could be lowered substantially, as most
of observed microsaccades were smaller than 400, see Fig. 12A. To
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Fig. 11. Alignment with attended meridian (non-event-related MS). In the hold condition
informative about the target meridian, with 84 ± 4% of trials classified correctly. See Fig
ascertain whether MS alignment varies with MS amplitude, we re-
peated the analysis for a range of different amplitude values. As
shown in Fig. 12B, the alignment of smaller MS also predicts the at-
tended meridian, albeit with diminished prediction performance.
However, even for MS amplitudes as low as 15..250, the predicted
performance was above 80% and significantly above the chance le-
vel (paired samples t-test T3 = 8.7, p = 0.003).

Taken together, our analysis revealed a ubiquitous MS align-
ment, which was comparable at all times (switch-related, target-
related, and non-event-related MS). This observation strongly sug-
gests that attention was directed (almost) continuously at the tar-
get stream and that MS continuously reflected this attentional
allocation. Whereas the influence of attention did not entail any
directional bias – in that MS were directed equally often towards
and away from the attended stream – it did impose a biased align-
ment: MS were directed more often along the attended meridian
than orthogonal to it.

4. Discussion

We studied the relation between covert attention and micro-
saccadic activity by combining several attentional manipulations
in a single experimental situation. Our paradigm – discriminating
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a stream of successively presented items – was a proven method
for engaging attention continuously and also afforded opportuni-
ties for spatial and temporal attention transients. Furthermore, this
paradigm largely eliminated the modulation of microsaccade rate
either by visual onsets or in anticipation of task-relevant items,
both of which had been prominent (and potentially confounding)
features of previous studies.

Consistent with numerous previous reports (Engbert & Kliegl,
2003; Hafed & Clark, 2002; Hafed, Lovejoy, & Krauzlis, 2011; Horo-
witz et al., 2007; Laubrock et al., 2010; Pastukhov & Braun, 2010),
we found that microsaccades tend to be directed towards a periph-
eral location when attention was being shifted towards this loca-
tion. We also confirmed the tendency of microsaccades to cluster
into ‘back and forth’ patterns that have been termed ‘‘square-
wave-jerks’’ (Hafed & Clark, 2002; Hafed, Lovejoy, & Krauzlis,
2011), presumably reflecting corrective mechanisms for maintain-
ing fixation. Finally, we confirmed that microsaccades tend to be
directed away from an attended peripheral location during an
attentional blink episode (Valsecchi, Betta, & Turatto, 2007).

In addition, our results contributed several new findings, which
we describe in detail below. In a nutshell, our observations suggest
a simple relation between attentional allocation and microsaccade
direction: (i) While an attentional focus builds up at a task-rele-
vant location, microsaccades aim predominately towards this loca-
tion. (ii) When such a focus relaxes, microsaccades aim
predominantly back towards fixation. (iii) When an attentional fo-
cus is sustained continuously, microsaccades aim equally often in
both directions, aligning themselves with the meridian of the
task-relevant location. Thus, the association between attention
and microsaccades is not restricted to exceptional episodes such
as attentional shifts, but is continuous and lasts throughout the
formation, maintenance, and relaxation of an attentional focus.
Accordingly, attentional allocation and eye movements seem to
be controlled continuously – not just episodically – by closely
overlapping brain structures.

4.1. Formation, relaxation, and re-formation of attentional focus

We observed microsaccades (and square-wave-jerks) towards a
behaviorally relevant location when attention shifted there for the
first time (switches in the cued stream location, Fig. 5) and when
attention re-focussed on a location after having lapsed (following
unsuccessful target discrimination, Fig. 7). In addition, we observed
microsaccades (but not square-wave-jerks) back towards fixation
when an attentional focus temporarily relaxed (‘‘attentional blink’’
following successful target discrimination, Fig. 6).

The ‘back and forth’ between microsaccades towards the at-
tended location and corrective microsaccades that restore fixation
served to ‘‘align’’ microsaccade direction with the meridian of the
attended location. This alignment was sufficiently reliable to infer
the attended meridian in approximately 80% of trials (Fig. 9D).

4.2. Continuously sustained attention

When attention was sustained continuously on a task-relevant
location, the appearance of a task-relevant target failed to increase
the probability of microsaccades towards this location (Fig. 6AB).
However, between approximately 750 ms and 2000 ms after the
target onset, we observed an increase in the probability of micro-
saccades away from the task-relevant location, presumably reflect-
ing a temporary relaxation of the attentional focus (‘‘attentional
blink’’).

These results contrast with a recent study of non-human prima-
tes (Hafed, Lovejoy, & Krauzlis, 2011), in which microsaccades
tended to be directed towards the cued location just before and
during the appearance of a task-relevant stimulus. However,
microsaccades in that study (unlike ours) also exhibited a promi-
nent preparatory suppression in anticipation of a task-relevant
stimulus, consistent with a preparatory re-focussing of attention
at the cued location. In other words, unlike the present study,
Hafed, Lovejoy, and Krauzlis (2011) do not appear to have attained
a true steady-state of attentional allocation (i.e., continuously sus-
tained attention).

4.3. Continuous alignment with task-relevant location

Our results show that microsaccade direction remained aligned
to the meridian of the location at which attention was sustained.
The degree of alignment was comparable during periods of contin-
uously sustained attention, periods with spatial attention shifts,
and periods with attentional blinks (Fig. 9D). Thus, microsaccade
aligment continuously reflected the task-relevant location.

In contrast, previous studies have concluded that microsaccade
direction best reflects the task-relevant location around the time of
an attentional shift. For example, Laubrock et al. (2010) stated that
‘‘if the attentional signal is not smeared over time, . . . it will be ex-
pressed in microsaccade direction’’. Similarly, we have reported
that the correlation between microsaccade direction and task-rele-
vant location is maximal at the very moment of an attentional shift
(Pastukhov & Braun, 2010).

The present results suggest a more nuanced conclusion: while
microsaccade direction indeed reveals attentional transients,
microsaccadic alignment equally reflects both attentional tran-
sients and continuously sustained attention. Accordingly, the full
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effect of attending to a task-relevant location becomes evident only
when both direction and alignment of MS are analyzed.

4.4. Dissociating rate and direction of microsaccades

For the first time, our observations distinguish between atten-
tional effects on the rate and on the direction of MS. This became
possible because our experimental paradigm (rapid serial visual
presentation, RSVP) eliminated almost entirely rate modulations
due to visual onsets (residual modulation �5%, Fig. 3) and due to
anticipation of imminent targets (�20%, Fig. 6) or imminent stream
switches (�10%, Fig. 5). In previous studies, substantial (4- to 10-
fold) modulations related to onsets and/or target anticipation were
superimposed over any attentional modulations of MS rate (Betta
et al., 2007Betta, Galfano, & Turatto, 2007; Engbert & Kliegl,
2003; Galfano, Betta, & Turatto, 2004; Hafed & Clark, 2002;
Laubrock, Engbert, & Kliegl, 2005; Pastukhov & Braun, 2010; Rolfs,
Kliegl, & Engbert, 2008; Rolfs, Engbert, & Kliegl, 2005; Rolfs,
Laubrock, & Kliegl, 2006).

Following the appearance of a target, or a switch of the cued
stream, we observed 2.2- to 2.4-fold modulations of MS rate. These
rate modulations extended over approximately 2 s and roughly
coincided with modulations of MS direction (switch-related MS,
Fig. 5; target-related MS, Fig. 6, and missed-target-related MS,
Fig. 7). Accordingly, we took these modulations to be purely atten-
tional in nature. Interestingly, the respective time-courses of rate
and direction modulations did not mirror each other, suggesting
that the underlying mechanisms may be complex (see below).

One may well ask whether the substantial (4- to 10-fold) mod-
ulations of MS rate observed in previous studies were always
exclusively attentional in nature. On the one hand, it is quite plau-
sible that visual onsets would attract exogenous attention and that
imminent targets would be anticipated by a focussing of endoge-
nous attention (both of which could, in turn, suppress MS activity).
On the other hand, the preparatory suppression of MS detrimental
to task performance may also reflect trace conditioning at the level
of premotor nuclei or motor neurons (Hafed, 2011). Further work is
needed to distinguish these possibilities.

4.5. Effect of extrafoveal eccentricity

The amplitude of microsaccades carries some information about
the eccentricity of the attended location. We observed significantly
smaller amplitudes when attention focused at fixation than when
it focused in the near or far periphery (3� or 9.5�). However, the
amplitude of microsaccades failed to distinguish between extrafo-
veal locations of different eccentricity (near and far periphery,
Fig. 8).

4.6. Implications for modeling

Several groups have modeled fixational eye movements in
terms of the fluctuating activity distribution of a retinotopic repre-
sentation in superior colliculus (Engbert et al., 2011; Engbert,
2012; Hafed, Goffart, & Krauzlis, 2009; Rolfs, Kliegl, & Engbert,
2008). Typically, these models assume that small deviations of
the center-of-activity from the fixated location generate continu-
ous fixational eye movements whereas large deviations trigger
restorative microsaccades. The preparation of saccades, or the
shifting of attention, to peripheral locations is assumed to involve
the formation of a secondary activity peak at the corresponding
retinotopic location. Presumably, such a secondary peak deforms
the primary activity peak around fixation, thereby modulating fix-
ational eye movements including microsaccades.

A key feature of current models (e.g., Engbert et al., 2011;
Engbert, 2012) is that both the instantaneous probability and
direction of MS are assumed to be byproducts of large dynamical
shifts in the collicular activity distribution (i.e., shifts of the atten-
tion focus). These assumptions appear doubtful in the light of the
present findings. Firstly, the probability of MS is comparable
whether an attentional focus builds up, relaxes, or is continuously
sustained, suggesting that MS reflect small spontaneous fluctua-
tions (not large dynamical shifts) in an activity distribution.
Secondly, if anticipatory saccadic suppression is eliminated, MS
probability and direction can be dissociated (and the close associa-
tion observed in many previous studies dissolves, e.g., Pastukhov &
Braun (2010)). Thus, it is not clear that one should seek to account
for attentional modulations of the probability and direction of MS
with a common mechanism. Instead, it may become necessary to
also consider mechanisms of saccadic suppression that do not
operate through a collicular activity distribution, for example,
conditioning at the level of premotor or motor structures (Hafed,
2011).
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